Introduction to SQL
(Structured Query
Language) § Data Types

P

Introduction to
SQL commands

3

Database Languages

Database Languages are known as data Sublanguages.

DBMSs have a facility for embedding the sublanguage in a
nigh-level programming language e.g. C, C++, Java Or VB. The
nigh-level language is then known as a host Language.

Most data sublanguages also provide interactive commands
that can be input directly from a terminal.

SQL Commands

A data sublanguage consists of five parts:

Data Defenition Language (DDL)

Used to specify the database schema.

Data Manipulation Language (DML)
Used to read and update the database.
Data Query Language (DQL)
Used for performing queries on the data within schema objects.

Data Control Language (DCL)

DCL includes commands such as GRANT and REVOKE which mainly deal with the rights,
permissions, and other controls of the database system.

Transaction Control Language (TCL)

Transactions group a set of tasks into a single execution unit. Each transaction begins with a
specific task and ends when all the tasks in the group are successfully completed. If any of the
tasks fail, the transaction fails. Therefore, a transaction has only two results: success or failure.

SQL Commands

“

02

Database, Schema, Table

3

A database schema is a logical grouping of objects
that belong to a user.

All created objects / structures (such as tables, views,
indexes) are stored in a database schema.

Data Dictionary

The data dictionary integrates the meta-data; definitive
information about the structure is recorded in a data

dictionaruy.

For example: definitions about the records, data items and other objects of interest to
users or required by the DBMS.

The DBMS consults the data dictionary before accessing or
manipulating the data.

https://dataedo.com/kb/query/postgresql

Data Dictionary

Table managing all tables.
select * from information schema.tables

Table managing all columns
select * from information schema.columns

. Tselect * from information_schema.columns b - v M
Tselect * from information_schematables | % | < VY o #0¢ table_catalog "Mnab\e,schema "ﬂ'nab\e,name '|===m\umn,name v |23 ordinal_position | MEcolumn_default | M€is nullable 7| MFdata_type | 123 character_maximum _length ¥ | 123 character_octet_le
o= o= ole= -IB . N - 5
: _catalog " “table._ “table_name " “table_type | self g_column_name 9 o - m— - : N—

1 |mydb DBClass test_char_length BASE TABLE g3 [mydd Pgcatalog preanmerg ¢ NO Lol
[£ 4 |myds pg_catalog preanhash 7 NO boolean
® L =
. 2 |mydb pg_catalog pg_statistic BASE TABLE P 5 |mydp Py catalog prieft 8 NO oid
i 6 |mydb pg_catalog prright 9 NO oid

3 |mydb pg_catalog pg_type BASE TABLE 7 |mydb pa_ctelog preesult 10 NO =3

. 8 mydb pg_catalog preom 11 NO oid

4 'mydb pg_catalog pg_foreign_table BASE TABLE o |y e g, n s oid

. 10 | mydb pg_catalog preade 1 NO regpr

5 mydb pUbIIC people BASE TABLE 11 | mydb pg_catalog prrest 14 NO reapr

6 |mydb public student BASE TABLE 12| mydo Py catalog prioin ! NO regpr

| 13 mydb pg_catalog id 1 NO oid

7 mydb public enrolled BASE TABLE 14| mydb pg.catelog pimethod NO oid

T . 15 mydb pg_catalog pfnamespace 4 NO oid

8 |mydb public course BASE TABLE 16 |mydb pa_cstelog plowner NO id

. o 17 mydb pg_catalog id 1 NO oid

g 9 |mydb pg_catalog pg_authid BASE TABLE g TSR myio no.catelo ocmethod 5 NO o
db 1 4 NO d

£ 10 |mydb pg_catalog pg_shadow VIEW 0L = = =

See the tables owned by the user.
select * from pg catalog.pg stat user tables

Database and Schema

CREATE DATABASE DatabaseName
DROP DATABASE DatabaseName
CREATE SCHEMA SchemaName
DROP SCHEMA SchemaName

Example: dbcourse.student means the student table in
dbcourse schema

Tables belonging to other users are not in the user’s schema.
You should use the owner’s name as a prefix to those tables.

Create table

CREATE TABLE SQL syntax
CREATE TABLE tablename
(columnnamel data_type,
columnname? data_type, ..);

Example:

CREATE TABLE student
(s_id CHAR(D),
s_first VARCHAR2(20));
Basic data types
Character
Number

Date/time
Large object

.
03

Naming Rules Convention

3

Naming Rules

Table names and column names:

Must begin with a letter

Must be 1-30 characters long

Must contain only A-Z, a-z, 0-9, | $, and #.

No national, numerals, punctuation, or other special

characters (such as spaces or dashes) are allowed.

Must not duplicate the name of another object owned by the same user

For table names the all letters are capitalized, or capitalized first letter only
Examples: STUDENTS, MARKS, SUBJ_TEACH or Students, Subjects, Marks, Subj_Teach.
Table names are plural, field name is singular.
Examples: table called MARKS (Marks); fields called Mark, Date (mark, date).
Tables and fields should be unigque within the database schema. For fields use the prefix with a2 or 3
character of the table name.
Examples: STUDENTS and TEACHERS would have a field called stdFirstName and tshFirstName

P
04
Data Type

3

ISO SQL Data Types

Table 6.1 1SO SQL data types.

Data type

boolean

character

bit

exact numeric
approximate numeric
datetime

interval

large objects

Declarations

BOOLEAN

CHAR VARCHAR
BIT BIT VARYING
NUMERIC DECIMAL
FLOAT REAL

DATE TIME
INTERVAL

CHARACTER LARGE OBJECT

INTEGER
DOUBLE PRECISION
TIMESTAMP

BINARY LARGE OBJECT

SMALLINT

Character Data Types

VARCHAR
Variable-length character data (up to 4000 characters)
Syntax: columnname VARCHAR(maximum_size)

If user enters data value less than maximum _size, DBMS only stores

actual character values
CHAR

Fixed-length character data (default = 2000)
Syntax: columnname CHAR(maximum_size)

If user enters data value less than maximum _size, DBMS adds trailing
blank spaces to the end of entry

The CHAR data type uses the storage more efficiently and processes
data faster than the VARCHAR?2 type.

Character Example

create table Test Char Length (first char(4), second varchar(5))

insert into Test Char Length wvalues ('12','123")
insert into Test Char Length wvalues ('1234','1234")
insert into Test Char Length wvalues ('1234"','12345")
insert into Test Char Length wvalues ('1234','123456")
insert into Test Char Length wvalues ('12345','12345")

select * from test char length

SELECT CONCAT (' (', first, ')'), CONCAT(' (', second, ')') FROM
Test Char Length;

Character Data Types

CHAR
Used to store strings of fixed size
Can range in size from 1 to 8000 bytes

Uses a fixed amount of storage, based
on the size of the column

Takes up 1 to 4 byte for each

character, based on collation setting

Better performance

Pads spaces to the right when storing
strings less than the fixed size length

VARCHAR
Used to store strings of variable length
Can range in size from 1 to 8000 bytes

Use varying amounts of storage space based on the size
of the string stored.

Takes up 1 to 4 byte for each character based on
collation and requires one or more bytes to store the
length of the data

Slightly poorer performance because length has to be
accounted for.

No padding necessary because it is variable in size

Text

VARCHAR vs. TEXT

O Indexing Ability: VARCHAR can be fully indexed, while TEXT columns can be indexed only up to a certain length.
O Sorting Possibility: VARCHAR can be sorted using the entire length of the String, but this is not possible for TEXT

[Storage usage: TEXT occupies 2 + length of string storage space, while VARCHAR occupies 1+ length of string, up to
255 characters, and 2 + length of string greater than 255 characters. So, up to 255 characters, VARCHAR even uses
lesser storage than TEXT.

O Performance Optimization: Based on the database technology!ll For example: VARCHAR can be stored in MySQL’s
memory storage; however, TEXT is not supported by it. So, if a query involves a TEXT column, temporary tables are
created on the disk storage. Using disk-based tables takes a toll on the resources, and query run completion takes
longer. PostgreSQL does not differentiate between TEXT and VARCHAR in terms of storage or performance. Both
types are variable-length strings that can store very large amounts of text.

O Length: VARCHAR can enforce a maximum length constraint, which TEXT does not

The NUMBER data type is used to store negative, positive, integer,
fixed-decimal, and floating-point numbers.

When a number type is used for a column, its precision and scale
can be specified.

Precision is the total number of significant digits in the number, both to the
left and to the right of the decimal point.
Scale is the total number of digits to the right of the decimal point.

Number -- integer

An integer is a whole number without any decimal part.

The data type for it would be defined as NUMBER(3), where 3
represents the maximum number of digits.

Number - fixed-point

Decimal number has a specific number of digits to the right of the
decimal point.

The PRICE column has values in dollars and cents, which requires
two decimal places - for example, values like 2.95, 3.99, 24.99, and

SO On.

If it is defined as NUMBER(4,2), the first number specifies the
precision and the second number the scale.

Number - floating-point

A floating-point decimal number has a variable number of
decimal places

To define such a column, do not specify the scale or precision
along with the NUMBER type.

By defining a column as a floating-point number, a value can be
stored in it with very high precision

Number Example

create table Test Number (fl numeric, f2 numeric (2), f£3
numeric (2,1))

insert i1nto Test Number wvalues (232.34,24,3.1)

select * from Test Number

Auto Increment

Use the PostgreSQL pseudo type SERIAL to create an auto-
increment colunr=. for ~ 4~k

Behind the scenes, the followmg statement:

CREATE TABLE table_name(
id
)

is equivalent to the following statements:

CREATE SEQUENCE table_name_id_seq;

CREATE TABLE table_name (
id NOT NULL DEFAULT nextval('table_name_id_seq')

ik

ALTER SEQUENCE table_name_id_seq
OWNED BY table_name.id;

Number Example

Mysqgl> Create table grocery_inventory (id int not null primary
key auto_increment, item_name varchar (50) not null, item_desc

text, item_price float not null, curr_qgty int not null);

Auto_Increment is a table modifier/constraint that will request
MySQL to add the next available number to the ID field for you.

Postgres Example:
CREATE TABLE CountNum (name char (5),regNo serial)

insert 1nto CountNum values('DB'), ('DS");
select * from CountNum

Date And Time Data Types

Datetime data subtypes
Store actual date and time values
DATE
TIMESTAMP

Interval data subtypes
Store elapsed time interval between two datetime values
INTERVAL YEAR TO MONTH
INTERVAL DAY TO SECOND

Date And Time Data Types

DATE

Stores dates from Dec 31, 4712 BC to Dec 31, AD 4712
Default date format; DD-MON-YY

Default time format; HH:MI:SS AM

Syntax: columnname DATE

TIMESTAMP

Stores date values similar to DATE data type . It stores the year, month,
and day of the DATE data type, plus hour, minute, and second values as
well as the fractional second value. Also stores fractional seconds.

Syntax: columnname TIMESTAMP

(fractional_seconds_precision)
Example: shipment_date TIMESTAMP(2)

Date And Time Data Types

INTERVAL YEAR TO MONTH

Stores time interval expressed in years and months using the
following syntax:
Example:

create table Interval _Time (time_enrolled INTERVAL YEAR TO
MONTH)

insert into Interval_Time values (INTERVAL 13 MONTH),(INTERVAL 'T’
MONTH),(INTERVAL "8 MONTH);

select * from Interval _Time

Date And Time Data Types

INTERVAL YEAR TO MONTH

o Example:
INTERVAL '123-2'" YEAR
Indicates an interval

INTERVAL '123'" YEAR
Indicates an interval

INTERVAL '300'" MONTH
Indicates an interval

TO
of

of

of

MONTH
123 years, 2 months.

123 years 0 months.

300 months.

Date And Time Data Types

INTERVAL DAY TO SECOND

o INTERVAL DAY TO SECOND stores a period of time in terms of days,
hours, minutes, and seconds.

Example:
= create table Interval_Time_Day (time_enrolled INTERVAL DAY TO SECOND)
= jnsert into Interval _Time_Day values

(INTERVAL '4 5:12:10.222' DAY TO SECOND),
(INTERVAL '7' DAY),
(INTERVAL '4 5:12' DAY TO minute),
(INTERVAL '400 5' DAY TO hour),
(INTERVAL "11:12:10.2222222"' HOUR TO second)
= select * from Interval _Time_Ds

time_enrolled ‘

!

7 days

4 days 05:12:00
400 days 05:00:00
11:12:10.222222

Large Object (LOB) Data Types

Store binary data such as:
Digitized sounds or images
References to binary files from word processor or
spreadsheet

How? Additional topic for study.

	Slide 1
	Slide 2
	Slide 3: Database Languages
	Slide 4: SQL Commands
	Slide 5: SQL Commands
	Slide 6
	Slide 7: Schema
	Slide 8: Data Dictionary
	Slide 9: Data Dictionary
	Slide 10: Database and Schema
	Slide 11: Create table
	Slide 12
	Slide 13: Naming Rules
	Slide 14
	Slide 15: ISO SQL Data Types
	Slide 16: Character Data Types
	Slide 17: Character Example
	Slide 18: Character Data Types
	Slide 19: Text
	Slide 20: Number
	Slide 21: Number -- integer
	Slide 22: Number – fixed-point
	Slide 23: Number – floating-point
	Slide 24: Number Example
	Slide 25: Auto Increment
	Slide 26: Number Example
	Slide 27: Date And Time Data Types
	Slide 28: Date And Time Data Types
	Slide 29: Date And Time Data Types
	Slide 30: Date And Time Data Types
	Slide 31: Date And Time Data Types
	Slide 32: Large Object (LOB) Data Types

